Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell Death Dis ; 14(4): 286, 2023 04 22.
Article in English | MEDLINE | ID: covidwho-2302136

ABSTRACT

How does SARS-CoV-2 cause lung microenvironment disturbance and inflammatory storm is still obscure. We here performed the single-cell transcriptome sequencing from lung, blood, and bone marrow of two dead COVID-19 patients and detected the cellular communication among them. Our results demonstrated that SARS-CoV-2 infection increase the frequency of cellular communication between alveolar type I cells (AT1) or alveolar type II cells (AT2) and myeloid cells triggering immune activation and inflammation microenvironment and then induce the disorder of fibroblasts, club, and ciliated cells, which may cause increased pulmonary fibrosis and mucus accumulation. Further study showed that the increase of T cells in the lungs may be mainly recruited by myeloid cells through ligands/receptors (e.g., ANXA1/FPR1, C5AR1/RPS19, and CCL5/CCR1). Interestingly, we also found that certain ligands/receptors (e.g., ANXA1/FPR1, CD74/COPA, CXCLs/CXCRs, ALOX5/ALOX5AP, CCL5/CCR1) are significantly activated and shared among lungs, blood and bone marrow of COVID-19 patients, implying that the dysregulation of ligands/receptors may lead to immune cell's activation, migration, and the inflammatory storm in different tissues of COVID-19 patients. Collectively, our study revealed a possible mechanism by which the disorder of cell communication caused by SARS-CoV-2 infection results in the lung inflammatory microenvironment and systemic immune responses across tissues in COVID-19 patients.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Ligands , Lung , Cell Communication
2.
Comput Struct Biotechnol J ; 19: 1163-1175, 2021.
Article in English | MEDLINE | ID: covidwho-2277232

ABSTRACT

Critical patients and intensive care unit (ICU) patients are the main population of COVID-19 deaths. Therefore, establishing a reliable method is necessary for COVID-19 patients to distinguish patients who may have critical symptoms from other patients. In this retrospective study, we firstly evaluated the effects of 54 laboratory indicators on critical illness and death in 3044 COVID-19 patients from the Huoshenshan hospital in Wuhan, China. Secondly, we identify the eight most important prognostic indicators (neutrophil percentage, procalcitonin, neutrophil absolute value, C-reactive protein, albumin, interleukin-6, lymphocyte absolute value and myoglobin) by using the random forest algorithm, and find that dynamic changes of the eight prognostic indicators present significantly distinct within differently clinical severities. Thirdly, our study reveals that a model containing age and these eight prognostic indicators can accurately predict which patients may develop serious illness or death. Fourthly, our results demonstrate that different genders have different critical illness rates compared with different ages, in particular the mortality is more likely to be attributed to some key genes (e.g. ACE2, TMPRSS2 and FURIN) by combining the analysis of public lung single cells and bulk transcriptome data. Taken together, we urge that the prognostic model and first-hand clinical trial data generated in this study have important clinical practical significance for predicting and exploring the disease progression of COVID-19 patients.

3.
Research Square ; 2022.
Article in English | EuropePMC | ID: covidwho-1786477

ABSTRACT

How SARS-CoV-2 causes disturbances of the lung microenvironment and systemic immune response remains a mystery. Here, we first analyze detailedly paired single-cell transcriptome data of the lungs, blood and bone marrow of two patients who died of COVID-19. Second, our results demonstrate that SARS-CoV-2 infection significantly increases the cellular communication frequency between AT1/AT2 cells and highly inflammatory myeloid cells, and induces the pulmonary inflammation microenvironment, and drives the disorder of fibroblasts, club and ciliated cells, thereby causing the increase of pulmonary fibrosis and mucus accumulation. Third, our works reveal that the increase of the lung T cell infiltration is mainly recruited by myeloid cells through certain ligands/receptors (ANXA1/FPR1, C5AR1/RPS19 and CCL5/CCR1), rather than AT1/AT2. Fourth, we find that some ligands and receptors such as ANXA1/FPR1, CD74/COPA, CXCLs/CXCRs, ALOX5/ALOX5AP, CCL5/CCR1, are significantly activated and shared among patients’ lungs, blood and bone marrow, implying that dysregulated ligands and receptors may cause the migration, redistribution and the inflammatory storm of immune cells in different tissues. Overall, our study reveals a latent mechanism by which the disorders of ligands and receptors caused by SARS-CoV-2 infection drive cell communication alteration, the pulmonary inflammatory microenvironment and systemic immune responses across tissues in COVID-19 patients.

4.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1205526

ABSTRACT

Studies have demonstrated that both mortality and severe illness rates exist significant difference in different gender COVID-19 patients, but the reasons are still very mysterious to date. Here, we firstly find that the survival outcome of female patients is better to male patients through analyzing the 3044 COVID-19 cases. Secondly, we identify many important master regulators [e.g. STAT1/STAT2 and zinc finger (ZNF) proteins], in particular female patients can express more ZNF proteins and stronger transcriptional activities than male patients in response to SARS-CoV-2 infection. Thirdly, we discover that ZNF protein activity is significantly negative correlation with the SARS-CoV-2 load of COVID-19 patients, and ZNF proteins as transcription factors can also activate their target genes to participate in anti-SARS-CoV-2 infection. Fourthly, we demonstrate that ZNF protein activity is positive correlation with the abundance of multiple immune cells of COVID-19 patients, implying that the highly ZNF protein activity might promote the abundance and the antiviral activity of multiple immune cells to effectively suppress SARS-CoV-2 infection. Taken together, our study proposes an underlying anti-SARS-COV-2 role of ZNF proteins, and differences in the amount and activity of ZNF proteins might be responsible for the distinct prognosis of different gender COVID-19 patients.


Subject(s)
COVID-19/metabolism , SARS-CoV-2/pathogenicity , Sequence Analysis, RNA/methods , Zinc Fingers , Adult , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/virology , Female , Flow Cytometry , Humans , Lymphocyte Subsets , Male , Middle Aged , Prognosis , SARS-CoV-2/isolation & purification , Single-Cell Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL